FRONT PAGE AMPYRA AUBAGIO AVONEX BETASERON COPAXONE EXTAVIA
Stan's Angels MS News Channel on YouTube GILENYA NOVANTRONE REBIF RITUXAN TECFIDERA TYSABRI
 Daily News for Neuros, Nurses & Savvy MSers: 208,152 Viewers, 8,368 Stories & Studies
Click Here For My Videos, Advice, Tips, Studies and Trials.
Timothy L. Vollmer, MD
Department of Neurology
University of Colorado Health Sciences Center Professor

Co-Director of the RMMSC at Anschutz Medical Center

Medical Director-Rocky Mountain MS Center
Click here to read my columns
Brian R. Apatoff, MD, PhD
Multiple Sclerosis Institute
Center for Neurological Disorders

Associate Professor Neurology and Neuroscience,

Weill Medical College of Cornell University

Clinical Attending in Neurology,
New York-Presbyterian Hospital
CLICK ON THE RED BUTTON BELOW
You'll get FREE Breaking News Alerts on new MS treatments as they are approved
MS NEWS ARCHIVES: by week

HERE'S A FEW OF OUR 6000+ Facebook & MySpace FRIENDS
Timothy L. Vollmer M.D.
Department of Neurology
University of Colorado Health Sciences Center
Co-Director of the RMMSC at Anschutz Medical Center
and
Medical Director-Rocky Mountain MS Center


Click to view 1280 MS Walk photos!

"MS Can Not
Rob You of Joy"
"I'm an M.D....my Mom has MS and we have a message for everyone."
- Jennifer Hartmark-Hill MD
Beverly Dean

"I've had MS for 2 years...this is the most important advice you'll ever hear."
"This is how I give myself a painless injection."
Heather Johnson

"A helpful tip for newly diagnosed MS patients."
"Important advice on choosing MS medication "
Joyce Moore


This page is powered by Blogger. Isn't yours?

Monday

 

Nanoparticle delivery of leukaemia inhibitory factor (LIF), of possible use in treating MS






















Image Source: MCCORMICK

Paragraph 2: The invention is in the field of compositions for neuroprotection, particularly compositions that promote and protect neural cells in the central nervous system of a mammal such as a human. Also described are methods for repairing tissues of the central nervous system of a mammal such as a human. Neurodegenerative diseases represent the largest area of unmet clinical need in the Western world. They are characterised by a progressive loss of the structure or function of neurons in the nervous system (neurodegeneration) and include Alzheimer's Disease (AD), Parkinson's Disease (PD) and a host of other rarer conditions such as Huntington's Disease (HD), Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). The process of neurodegeneration is not well understood and so the diseases that stem from it have no effective cures, nor is it possible to slow down their progression, as yet. 

Paragraph 90: In the CNS, LIF is thought to act predominantly as an injury factor, optimising the pool of neural precursors available for repopulation during repair (Pitman et al 2004, Mol Cell Neuroscience). LIF promotes neural stem cell self-renewal in the adult brain, regulating the emergence of more differentiated cell types, which ultimately leads to an expansion of the neural stem cell pool (Bauer, S. et al., 2006). LIF also stimulates the proliferation of parenchymal glial progenitors, in particular oligodendrocyte progenitor cells, through the activation of gp130 receptor signaling within these cells. This effect of LIF can be used to enhance the generation of oligodendrocytes and suggests that LIF has both reparative and protective activities that makes it a suitable candidate for the treatment of CNS demyelinating disorders and injuries (Deverman, B. E. et al., 2012). Furthermore, LIF has been shown to directly prevent oligodendrocyte death in animal models of multiple sclerosis, which is a disabling inflammatory demyelinating disease of the CNS, and this effect complements endogenous LIF receptor signalling, which already serves to limit oligodendrocyte loss during immune attack (Butzkueven, H. et al., 2002). LIF has also been shown to up-regulate the re-expression of NPCs in the brain of a Parkinson's Disease mouse model (Liu, J. et al., 2009). 

Paragraph 102: The link between IL6, a potent inducer of pathogenic inflammatory TH17 lymphocytes and neurodegenerative disease progression is of further relevance, since the inventors have found that LIF directly suppresses both IL6 activity and TH17 cell development and instead promotes tolerogenic T.sub.reg cells (Gao et al 2009; Park et al 2011). This correlates with the recent finding that T.sub.reg opposes TH17-driven dopaminergic neurodegeneration in a mouse model of Parkinson's Disease (Reynolds et al 2010); and that LIF opposes pathogenic TH17 cells in an experimental allergic encephalitis (EAE) model of multiple sclerosis, a demyelinating disease of the CNS (Cao et al 2011). 

Claim 18: The nanoparticle of claim 11, wherein the neurodegenerative disease is selected from the group consisting of: Alzheimer's Disease (AD), Multiple Sclerosis (MS); Parkinson's Disease (PD); Huntington's Disease (HD); Frontotemporal dementia (FTD); and Amyotrophic Lateral Sclerosis (ALS).


Story Source: The above story is based on materials provided by INTELLECTUALPROPERTYNEWSAFFECTINGBUSINESSANDEVERYDAYLIFE
Note: Materials may be edited for content and length


Go to Newer News Go to Older News