FRONT PAGE AMPYRA AUBAGIO AVONEX BETASERON COPAXONE EXTAVIA
Stan's Angels MS News Channel on YouTube GILENYA NOVANTRONE REBIF RITUXAN TECFIDERA TYSABRI
 Daily News for Neuros, Nurses & Savvy MSers: 208,152 Viewers, 8,368 Stories & Studies
Click Here For My Videos, Advice, Tips, Studies and Trials.
Timothy L. Vollmer, MD
Department of Neurology
University of Colorado Health Sciences Center Professor

Co-Director of the RMMSC at Anschutz Medical Center

Medical Director-Rocky Mountain MS Center
Click here to read my columns
Brian R. Apatoff, MD, PhD
Multiple Sclerosis Institute
Center for Neurological Disorders

Associate Professor Neurology and Neuroscience,

Weill Medical College of Cornell University

Clinical Attending in Neurology,
New York-Presbyterian Hospital
CLICK ON THE RED BUTTON BELOW
You'll get FREE Breaking News Alerts on new MS treatments as they are approved
MS NEWS ARCHIVES: by week

HERE'S A FEW OF OUR 6000+ Facebook & MySpace FRIENDS
Timothy L. Vollmer M.D.
Department of Neurology
University of Colorado Health Sciences Center
Co-Director of the RMMSC at Anschutz Medical Center
and
Medical Director-Rocky Mountain MS Center


Click to view 1280 MS Walk photos!

"MS Can Not
Rob You of Joy"
"I'm an M.D....my Mom has MS and we have a message for everyone."
- Jennifer Hartmark-Hill MD
Beverly Dean

"I've had MS for 2 years...this is the most important advice you'll ever hear."
"This is how I give myself a painless injection."
Heather Johnson

"A helpful tip for newly diagnosed MS patients."
"Important advice on choosing MS medication "
Joyce Moore


This page is powered by Blogger. Isn't yours?

Sunday

 

Antioxidant Therapies Seen as Promising Approach in Treating MS and Like Diseases



























A review article published in the British Journal of Pharmacology assesses antioxidant approaches for treating neurodegenerative disorders such as multiple sclerosis, Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis (ALS).

The review, “Microglia antioxidant systems and redox signalling,” notes that certain compounds associated with oxidative stress appear to be promising therapeutic targets for treating neurodegenerative disorders, with researchers investigating the potential for enhancing antioxidant capacity by targeting what’s known as the Nrf2 pathway — a major regulator of antioxidant response.

The authors also note ongoing development of techniques to inhibit NADPH oxidases of the NOX family, which are key sources of reactive oxygen species (free radicals) that contribute to a wide range of pathological processes, potentially including immunosuppression and hypothyroidism. Increased NOX activity has also been found to contribute to a large number of other pathologies, particularly cardiovascular diseases and neurodegeneration.

In a 2008 paper published in the journal Immunopharmacology and Immunotoxicology and titled “Antioxidant therapy in multiple sclerosis,” authors Abbas Mirshafiey and Monireh Mohsenzadegan note that reactive oxygen species (ROS) play an important role in various events underlying the pathology of multiple sclerosis. They observe that while the development of MS is not completely understood, various studies have suggested that ROS contributes to the formation and persistence of MS lesions by acting on distinct pathological processes.

Potential strategies for limiting oxidative stress associated with the development of neurodegenerative diseases include reducing production of nitric oxide and preventing mitochondrial dysfunction.

“There are still several gaps in our understanding of the basis of oxidative damage in neurodegenerative disorders. However, it is increasingly accepted that many diseases share common pathways of oxidative stress-related damage, and it’s likely that significant progress will be made in the design and implementation of effective therapeutic strategies in the next few years,” said Dr. Gethin McBean of the UCD Conway Institute of Biomolecular and Biomedical Research in Dublin, Ireland, and lead author of the British Journal of Pharmacology article.

McBean and her colleagues note that glial cells called microglia — which are the resident immune cells of the central nervous system (CNS) — are associated with oxidant production by NADPH oxidase (NOX2) and implicated in many CNS disorders.

In a 2007 paper published in the journal Current Medicinal Chemistry and titled “Microglial activation and its implications in the brain diseases,”  researchers from the National University of Singapore note that an inflammatory process in the central nervous system mediated by activated microglia is believed to play an important role in the pathway leading to neuronal cell death in a number of neurodegenerative diseases, and that activation of microglia is a hallmark of brain pathology.

They say it remains controversial as to whether microglial cells function beneficially or detrimentally in various neuropathological conditions, but that suppression of microglia-mediated inflammation has been considered an important strategy in neurodegenerative disease therapy. Several anti-inflammatory drugs have been shown to repress the microglial activation and to exert neuroprotective effects in the CNS, although the molecular mechanisms underlying these effects remain unclear.

Story Source: The above story is based on materials provided by MULTIPLESCLEROSISNEWSTODAY
Note: Materials may be edited for content and length
Click here to read original article


Go to Newer News Go to Older News