FRONT PAGE AMPYRA AUBAGIO AVONEX BETASERON COPAXONE EXTAVIA
Stan's Angels MS News Channel on YouTube GILENYA NOVANTRONE REBIF RITUXAN TECFIDERA TYSABRI
 Daily News for Neuros, Nurses & Savvy MSers: 208,152 Viewers, 8,368 Stories & Studies
Click Here For My Videos, Advice, Tips, Studies and Trials.
Timothy L. Vollmer, MD
Department of Neurology
University of Colorado Health Sciences Center Professor

Co-Director of the RMMSC at Anschutz Medical Center

Medical Director-Rocky Mountain MS Center
Click here to read my columns
Brian R. Apatoff, MD, PhD
Multiple Sclerosis Institute
Center for Neurological Disorders

Associate Professor Neurology and Neuroscience,

Weill Medical College of Cornell University

Clinical Attending in Neurology,
New York-Presbyterian Hospital
CLICK ON THE RED BUTTON BELOW
You'll get FREE Breaking News Alerts on new MS treatments as they are approved
MS NEWS ARCHIVES: by week

HERE'S A FEW OF OUR 6000+ Facebook & MySpace FRIENDS
Timothy L. Vollmer M.D.
Department of Neurology
University of Colorado Health Sciences Center
Co-Director of the RMMSC at Anschutz Medical Center
and
Medical Director-Rocky Mountain MS Center


Click to view 1280 MS Walk photos!

"MS Can Not
Rob You of Joy"
"I'm an M.D....my Mom has MS and we have a message for everyone."
- Jennifer Hartmark-Hill MD
Beverly Dean

"I've had MS for 2 years...this is the most important advice you'll ever hear."
"This is how I give myself a painless injection."
Heather Johnson

"A helpful tip for newly diagnosed MS patients."
"Important advice on choosing MS medication "
Joyce Moore


This page is powered by Blogger. Isn't yours?

Friday

 

Diet Plays a Role in MS Progression Through Its Impact on Astrocytes, Researchers Say


























Dietary habits and the composition of the gut flora can influence neuroinflammation and affect the outcome of neurodegenerative diseases such as multiple sclerosis (MS), according to a study published in the journal Nature Medicine and titled “Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammations via the aryl hydrocarbon receptor.”

Astrocytes, the brain immune cells, play an important role during central nervous system injury and disease, and are thought to participate in the pathogenesis of MS. Although the microbial flora and its products have been shown to control T-cell inflammation, through mechanisms that include the production of immunoregulatory metabolites from precursors provided through diet, little is known about the effects of diet and microbial products on the inflammatory response of immune cells in the brain.

Investigators at Brigham and Women’s Hospital (BWH) used preclinical models of MS and samples from MS patients to find that modifications in the diet and gut flora also influence astrocytes in the brain.

“For the first time, we’ve been able to identify that food has some sort of remote control over central nervous system inflammation,” said Francisco Quintana, PhD,  the study’s senior author and an investigator in the Ann Romney Center for Neurologic Diseases at BWH, in a press release. “What we eat influences the ability of bacteria in our gut to produce small molecules, some of which are capable of traveling all the way to the brain. This opens up an area that’s largely been unknown until now: how the gut controls brain inflammation.”

Researchers performed a genome-wide transcriptional analysis on astrocytes in a mouse model of MS, and saw that the majority of the genes whose expression was modified were linked to interferon I (IFN-I), a signaling pathway involved in the reduction of inflammation.

The team showed that molecules derived from dietary tryptophan, an amino acid found in a variety of foods — such as chocolate, milk, nuts, meats, beans, cheese, and eggs — are metabolized by the gut flora, and act in combination with IFN-I in astrocytes to limit brain inflammation. Interestingly, tryptophan-derived metabolites were found to be decreased in the blood of MS patients.

“Deficits in the gut flora, deficits in the diet, or deficits in the ability to uptake these products from the gut flora or transport them from the gut — any of these may lead to deficits that contribute to disease progression,” Dr. Quintana said.

In the future, researchers plan to investigate whether these findings can be translated into biomarkers for diagnosing and detecting disease advancement, or into new targets for therapeutic approaches for neurological disorders.

Story Source: The above story is based on materials provided by MULTIPLESCLEROSISNEWSTODAY
Note: Materials may be edited for content and length

Labels:



Go to Newer News Go to Older News