FRONT PAGE AMPYRA AUBAGIO AVONEX BETASERON COPAXONE EXTAVIA
Stan's Angels MS News Channel on YouTube GILENYA NOVANTRONE REBIF RITUXAN TECFIDERA TYSABRI
 Daily News for Neuros, Nurses & Savvy MSers: 208,152 Viewers, 8,368 Stories & Studies
Click Here For My Videos, Advice, Tips, Studies and Trials.
Timothy L. Vollmer, MD
Department of Neurology
University of Colorado Health Sciences Center Professor

Co-Director of the RMMSC at Anschutz Medical Center

Medical Director-Rocky Mountain MS Center
Click here to read my columns
Brian R. Apatoff, MD, PhD
Multiple Sclerosis Institute
Center for Neurological Disorders

Associate Professor Neurology and Neuroscience,

Weill Medical College of Cornell University

Clinical Attending in Neurology,
New York-Presbyterian Hospital
CLICK ON THE RED BUTTON BELOW
You'll get FREE Breaking News Alerts on new MS treatments as they are approved
MS NEWS ARCHIVES: by week

HERE'S A FEW OF OUR 6000+ Facebook & MySpace FRIENDS
Timothy L. Vollmer M.D.
Department of Neurology
University of Colorado Health Sciences Center
Co-Director of the RMMSC at Anschutz Medical Center
and
Medical Director-Rocky Mountain MS Center


Click to view 1280 MS Walk photos!

"MS Can Not
Rob You of Joy"
"I'm an M.D....my Mom has MS and we have a message for everyone."
- Jennifer Hartmark-Hill MD
Beverly Dean

"I've had MS for 2 years...this is the most important advice you'll ever hear."
"This is how I give myself a painless injection."
Heather Johnson

"A helpful tip for newly diagnosed MS patients."
"Important advice on choosing MS medication "
Joyce Moore


This page is powered by Blogger. Isn't yours?

Tuesday

 

Innate immune system modulates severity of MS




































Myeloid cells (shown in green) exacerbate the severity of multiple sclerosis by sending out chemical signals that boost inflammation and attract autoimmune T cells (shown in red) to the central nervous system.
Credit: Courtesy of Dr. Iftach Shaked, La Jolla Institute for Allergy and Immunology

Multiple sclerosis, a debilitating neurological disease, is triggered by self-reactive T cells that successfully infiltrate the brain and spinal cord where they launch an aggressive autoimmune attack against myelin, the fatty substance that surrounds and insulates nerve fibers. Over time, the resulting bouts of inflammation permanently damage the myelin sheath and the nerve fibers it protects, disrupting nerve signals traveling to and from the brain.

But the molecular cues that enable autoimmune T cells, which are usually kept at bay by the blood-brain barrier, to slip into the central nervous system had remained unclear. In their latest study, published in the Nov. 2, 2015, advance online issue of Nature Immunology, researchers at the La Jolla Institute for Allergy and Immunology report that these disease-causing autoimmune T cells are lured into the nervous system by monocytes and macrophages, a subset of immune cells better known as the immune system's cleanup crew.

"Our results show that macrophages and monocytes actively participate in the initiation and progression of multiple sclerosis, which has long been considered a primarily T cell driven disease," says the study's senior author Catherine Hedrick, Ph. D., a professor in the Division of Inflammation Biology. "They exacerbate the severity of the disease by sending out chemical signals that boost inflammation and attract autoimmune T cells to the central nervous system."

By revealing the molecular mechanisms that control neuroinflammation, these findings add a new layer of complexity to our understanding of multiple sclerosis and support the growing appreciation of the significance of the crosstalk between the peripheral immune system and the brain. They also open up new avenues for potential multiple sclerosis therapies via manipulating the levels of immune regulators that contribute to inflammation in the central nervous system.

"Multiple sclerosis affects millions of people worldwide," says the study's lead author, Iftach Shaked, Ph.D., a postdoctoral researcher in the laboratory of LJI professor Klaus Ley, Ph.D. "But what's really puzzling is that we all have autoimmune T cells that recognize myelin basic protein but normally they do not infiltrate the central nervous system and cause disease. "

Stress can worsen symptoms of inflammatory diseases such as multiple sclerosis but the molecular mechanisms linking cellular stress signaling and neuroinflammation had remained unclear.

A chance hallway encounter between Shaked and co-first author Richard Hanna, Ph.D., an immunologist in Hedrick's laboratory, sparked a collaboration that provided a starting point to track the elusive link. Hanna studies a protein known as Nr4a1, which responds to both inflammatory and stress signals and the researchers hypothesized that it may be a key factor in the prevention of autoimmunity affecting the central nervous system.

To address the importance of Nr4a1 in brain autoimmunity, the researchers induced experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, in mice with and without Nr4a1. In the absence of Nr4a1, auto-reactive T cells infiltrated the central nervous system much earlier and in greater numbers exacerbating the progression and severity of the disease when compared to the control group.

When Shaked and Hanna dug deeper, they discovered that Nr4a1 represses the production of norepinephrine, a major mediator of the body's response to physiological and psychological stressors. Without Nr4a1 to put a damper on production, monocytes and macrophages increase secretion of norepinephrine, which in turn leads to the activation of macrophages, thereby amplifying neuroinflammation and causing a massive influx of T cells into the central nervous system.

Story Source: The above story is based on materials provided by SCIENCEDAILY
Note: Materials may be edited for content and length


Go to Newer News Go to Older News