Daily News for Neuros, Nurses & Savvy MSers: 208,152 Viewers, 8,368 Stories & Studies
Click Here For My Videos, Advice, Tips, Studies and Trials.
Timothy L. Vollmer, MD
Department of Neurology
University of Colorado Health Sciences Center Professor

Co-Director of the RMMSC at Anschutz Medical Center

Medical Director-Rocky Mountain MS Center
Click here to read my columns
Brian R. Apatoff, MD, PhD
Multiple Sclerosis Institute
Center for Neurological Disorders

Associate Professor Neurology and Neuroscience,

Weill Medical College of Cornell University

Clinical Attending in Neurology,
New York-Presbyterian Hospital
You'll get FREE Breaking News Alerts on new MS treatments as they are approved

HERE'S A FEW OF OUR 6000+ Facebook & MySpace FRIENDS
Timothy L. Vollmer M.D.
Department of Neurology
University of Colorado Health Sciences Center
Co-Director of the RMMSC at Anschutz Medical Center
Medical Director-Rocky Mountain MS Center

Click to view 1280 MS Walk photos!

"MS Can Not
Rob You of Joy"
"I'm an Mom has MS and we have a message for everyone."
- Jennifer Hartmark-Hill MD
Beverly Dean

"I've had MS for 2 years...this is the most important advice you'll ever hear."
"This is how I give myself a painless injection."
Heather Johnson

"A helpful tip for newly diagnosed MS patients."
"Important advice on choosing MS medication "
Joyce Moore

This page is powered by Blogger. Isn't yours?



Multiple Sclerosis Could be Treated with a Surprising Medication

An already approved medication used for bladder problems might help to treat multiple sclerosis, according to researchers at the State University of New York at Buffalo.

Lead author Fraser J. Sim, PhD, Assistant Professor in the Department of Pharmacology and Toxicology in the University at Buffalo School of Medicine and Biomedical Sciences stated “We have identified a new drug target that promotes stem cell therapy for myelin-based disease, such as MS.”

The research appeared in the Journal of Neuroscience and was funded by the National Multiple Sclerosis Society, the Kalec Multiple Sclerosis Foundation and the Empire State Stem Cell Fund.

The medication is called solifenacin, which has already been approved by the4 federal drug administration (FDA) to treat overactive bladder. The drug targets a receptor for the neurotransmitter acetylcholine, known as the muscarinic receptor. It could also act on cells that remyelinate the nerves of the body. Myelin is the fatty substance that wraps around neurons and is damaged in multiple sclerosis due to an autoimmune attack. Oligodendocytes are specialized cells that produce the myelin.

“Our hypothesis is that in MS, the oligodendrocyte progenitor cells seem to get stuck,” Sim noted. “When these cells don’t mature properly, they don’t differentiate into myelinating oligodendrocytes.”

In the study, Sim and his coworkers studied the molecular pathways that control how oligodendrocyte cells formed. Then they tried to identify drugs that could change how much myelin the oligodendrocytes produce.

They noted that when drugs that bound to the muscarinic type 3 receptor on human oligodendrocyte stem cells were used, this prevented them from becoming oligodendrocytes.1

Sim wondered if the opposite effect could also be produced by targeting the same receptor. “So we thought, if we had something that blocks instead of activates this receptor, could we boost differentiation?” Solifenacin, the anti-muscarinic drug for overactive bladder, turned out to be the answer.

“We were excited about this because solifenacin is an approved drug that’s already on the market,” says Sim.

The scientists studied solifenacin’s effects on transplanted human oligodendrocyte progenitor cells in mice that are genetically altered to lack myelin. Remarkably, more oligodendrocytes and myelin resulted from the solifenacin treatment.

With Richard J. Salvi, PhD, SUNY Distinguished Professor in the Department of Communicative Disorders and Sciences, and director of UB’s Center for Hearing and Deafness, Sim also studied whether the induction of oligodendrocytes and myelin created a functional response.

They found improvement in animals with hearing problems that had received transplants with the human oligodendrocyte progenitor cells treated with solifenacin. This was likely due to improvements in neural connections due to extra myelin produced by the oligodendrocytes.

“We have identified a way to improve human myelination,” says Sim. The researchers plan to further study solifenacin in humans.

Story Source: The above story is based on materials provided by MULTIPLESCLEROSISNEWSTODAY
Note: Materials may be edited for content and length

Go to Newer News Go to Older News