Daily News for Neuros, Nurses & Savvy MSers: 208,152 Viewers, 8,368 Stories & Studies
Click Here For My Videos, Advice, Tips, Studies and Trials.
Timothy L. Vollmer, MD
Department of Neurology
University of Colorado Health Sciences Center Professor

Co-Director of the RMMSC at Anschutz Medical Center

Medical Director-Rocky Mountain MS Center
Click here to read my columns
Brian R. Apatoff, MD, PhD
Multiple Sclerosis Institute
Center for Neurological Disorders

Associate Professor Neurology and Neuroscience,

Weill Medical College of Cornell University

Clinical Attending in Neurology,
New York-Presbyterian Hospital
You'll get FREE Breaking News Alerts on new MS treatments as they are approved

HERE'S A FEW OF OUR 6000+ Facebook & MySpace FRIENDS
Timothy L. Vollmer M.D.
Department of Neurology
University of Colorado Health Sciences Center
Co-Director of the RMMSC at Anschutz Medical Center
Medical Director-Rocky Mountain MS Center

Click to view 1280 MS Walk photos!

"MS Can Not
Rob You of Joy"
"I'm an Mom has MS and we have a message for everyone."
- Jennifer Hartmark-Hill MD
Beverly Dean

"I've had MS for 2 years...this is the most important advice you'll ever hear."
"This is how I give myself a painless injection."
Heather Johnson

"A helpful tip for newly diagnosed MS patients."
"Important advice on choosing MS medication "
Joyce Moore

This page is powered by Blogger. Isn't yours?



A skin patch Immunotherapy for MS Succeeds in Trial

 A skin patch delivering peptides derived from the presumed autoimmune target in multiple sclerosis reduced relapse frequency and brain lesions in a pilot clinical trial, researchers said.

In an accompanying commentary, Lawrence Steinman, MD, of Stanford University, called the results "promising" and added that they were consistent with what many in the field have considered the Holy Grail in MS: the induction of immunological tolerance.

MS is widely believed to result from an autoimmune attack on myelin, the principal component of the sheathing that surrounds nerve fibers. When the myelin sheaths become sufficiently degraded, nerve function is impaired as well.

But, compared with the drug-development effort industry has expended toward agents that interfere with some aspect of immune function, comparatively little has focused on persuading the immune system to stop attacking myelin in the first place, Steinman indicated.

"It is clear that the pharmaceutical industry is taking the safer approach, the 'well-traveled road,' when they redirect drugs with a major impact on immune function, drugs often already approved for other diseases," he wrote, alluding to drugs such as anti-CD20 drugs including rituximab (Rituxan) and ocrelizumab and the anti-CD52 agent alemtuzumab (Lemtrada).

Hitting those targets "results in massive perturbation and deletion of major components of the immune system, an approach well worth taking in malignancy, but an approach that could prove problematic in the long run for chronic autoimmune diseases of the nervous system," Steinman wrote.

In the current study, Selmaj and colleagues selected three myelin-based peptides (without industry funding or participation) that could be delivered transdermally from patches placed on the upper arm. These peptides included epitopes that earlier studies had suggested were targeted for immune attack in MS patients.

The patches were formulated to deliver 1 or 10 mg of these peptides or saline -- 10 patients received the saline patches, 16 the 1-mg patch, and four the 10-mg patch. The patches were changed weekly during the first 4 weeks and then monthly for 11 months. Patients and clinical staff were blinded to treatment assignments; the patches were visually identical.

Reflecting the clinical MS population, most patients were women. The mean age was about 37, with duration of MS symptoms averaging about 8 years and baseline EDSS disability scores averaging 2.6. Mean annualized relapse rate prior to enrollment was 1.1.

After one year in the study, the number of relapse-free patients and the number showing disability progression in each treatment group were as follows:

Placebo: relapse free, 1/10; progressive disability, 7/10
1 mg myelin: relapse free, 10/16; progressive disability, 3/16
10 mg myelin: relapse free, 3/4; progressive disability, 1/4
Mean EDSS scores increased by 0.75 in the placebo group versus 0.08 and 0.00 in the 1- and 10-mg patch groups, respectively.

MRI results showed a more mixed picture, especially with respect to the 10-mg group. The mean cumulative number of gadolinium-enhancing lesions with 10 mg was actually higher than in the placebo group (0.0341 versus 0.0255), and the volume of those lesions was nearly doubled with the 10-mg patch versus placebo.

But the mean cumulative number of new T2 lesions was lower with both the 1- and 10-mg patches (0.75 and 1.25, respectively) than in the placebo group (2.4).

Mean T1 lesion volume decreased in both of the myelin patch arms whereas it increased with placebo, yet mean T2 lesion volume decreased only with the 1-mg patch.

Overall, Selmaj and colleagues concluded that "the efficacy and safety profiles that have emerged from this study make the transdermal application of a mixture of three myelin peptides, an attractive and promising therapeutic approach in patients with relapsing-remitting MS."

And, in line with Steinman's cautions about untoward immune effects of other treatment strategies, Selmaj and colleagues suggested that myelin peptide delivery would "spar[e] other mechanisms critical for immune protection."

Steinman suggested that the same approach could also yield good results in other neuroimmunological diseases thought to have single-antigen autoimmune targets -- specifically, neuromyelitis optica and myasthenia gravis. The self-antigen damaged in the former is aquaporin 4, while in the latter it's the acetylcholine receptor molecule


Labels: ,

Go to Newer News Go to Older News